sp(6), type \(C^{1}_3\)
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.
Semisimple subalgebras.

Page generated by the calculator project.
g: C^{1}_3. There are 10 table entries (= 8 larger than the Cartan subalgebra + the Cartan subalgebra + the full subalgebra).
Type k_{ss}: C^{1}_3
(Full subalgebra)
Type C(k_{ss})_{ss}: 0
Type k_{ss}: B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 3A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: B^{1}_2

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: 0
(Cartan subalgebra)
Type C(k_{ss})_{ss}: C^{1}_3

There are 7 parabolic, 2 pseudo-parabolic but not parabolic and 1 non pseudo-parabolic root subsystems.
The roots needed to generate the root subsystems are listed below.
["parabolic","0", []],
["parabolic","A^{1}_1", [[2, 2, 1]]],
["parabolic","A^{2}_1", [[1, 2, 1]]],
["parabolic","A^{2}_1+A^{1}_1", [[1, 2, 1], [0, 0, 1]]],
["parabolic","B^{1}_2", [[2, 2, 1], [-1, 0, 0]]],
["parabolic","A^{2}_2", [[1, 2, 1], [0, -1, 0]]],
["parabolic","C^{1}_3", [[1, 2, 1], [0, -1, 0], [0, 0, -1]]],
["pseudoParabolicNonParabolic","2A^{1}_1", [[2, 2, 1], [0, 2, 1]]],
["pseudoParabolicNonParabolic","B^{1}_2+A^{1}_1", [[2, 2, 1], [-1, 0, 0], [0, 0, 1]]],
["nonPseudoParabolic","3A^{1}_1", [[2, 2, 1], [0, 2, 1], [0, 0, 1]]]
LaTeX table with root subalgebra details.
\documentclass{article}
\usepackage{longtable, amssymb, lscape}
\begin{document}
Lie algebra type: $C^{1}_3$. There are 10 table entries (= 8 larger than the Cartan subalgebra + the Cartan subalgebra + the full subalgebra).
Let $\mathfrak g$ stand for the type of the regular subalgebra and $C(\mathfrak g)$ for the type of the centralizer. Let $r$ stand for the rank of $\mathfrak g$, let $r_c$ stand for the rank of the semisimple part of the centralizer, let $p$ stand for the number of positive roots of $\mathfrak g$, let $q$ stand for the number of positive roots of the centralizer, and let $m$ stand for the number of $A_1$ components (of all root lengths) of $\mathfrak g$. \begin{longtable}{cccccccc}
$\mathfrak g$ & $C(\mathfrak g)$& $p$ & $q$& $m$& $r$ & $c_r$ \\\endhead
$C^{1}_3$&$0$&$9$&$0$&$0$&$3$&$0$&\\
$B^{1}_2+A^{1}_1$&$0$&$5$&$0$&$1$&$3$&$0$&\\
$3A^{1}_1$&$0$&$3$&$0$&$3$&$3$&$0$&\\
$A^{2}_2$&$0$&$3$&$0$&$0$&$2$&$0$&\\
$B^{1}_2$&$A^{1}_1$&$4$&$1$&$0$&$2$&$1$&\\
$A^{2}_1+A^{1}_1$&$0$&$2$&$0$&$2$&$2$&$0$&\\
$2A^{1}_1$&$A^{1}_1$&$2$&$1$&$2$&$2$&$1$&\\
$A^{2}_1$&$A^{1}_1$&$1$&$1$&$1$&$1$&$1$&\\
$A^{1}_1$&$B^{1}_2$&$1$&$4$&$1$&$1$&$2$&\\
$0$&$C^{1}_3$&$0$&$9$&$0$&$0$&$3$&\\
\end{longtable}
\end{document}